的面积为,所在的平面内有一点,当 时,点在上;当 时,点在内;当 时,点在外.
已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM; (2)判断四边形MENF是什么特殊四边形,并证明你的结论; (3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).
已知关于x的一元二次方程. (1)若此方程有两个不相等的实数根,求实数k的取值范围; (2)已知x=3是此方程的一个根,求方程的另一个根及k的值;
解方程:(1)x(x+2)=5x+10 (2)3x2-6x+1=0
如图,直径为10的⊙O经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+48=0的两根。 (1)求线段OA、OB的长; (2)已知点C在劣弧OA上,连结BC交OA于D,当OC2=CD·CB时,求C点的坐标; (3)在⊙O上是否存在点P,使S△POD=S△ABD.若存在,求出点P的坐标;若不存在,请说明理由.
如图,I是△ABC的内心,∠BAC的平分线与△ABC的外接圆相交于点D,交BC于点E. (1)求证:BD=ID; (2)求证:ID2=DE•DA.