(本小题满分14分)一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.(Ⅰ)请画出该几何体的直观图,并求出它的体积;(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD—A1B1C1D1? 如何组拼?试证明你的结论;(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD—A1B1C1D1的棱CC1的中点为E, 求平面AB1E与平面ABC所成二面角的余弦值。
(本小题满分12分) 如图,三棱锥中,底面于,,点,点分别是的中点. (1) 求证:侧面⊥侧面; (2) 求点到平面的距离; (3) 求异面直线与所成的角的余弦.
(本小题满分12分)均为等腰直角三角形, 已知它们的直角顶点…,在曲线上,在轴上(如图), (1) 求斜边的长; (2) 写出数列的通项公式.
(本小题满分12分) 一元二次方程的两个实数根为和. (1) 求实数的取值范围; (2) 求的取值范围及其最小值
(本小题满分14分) 如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点. (1) 设点分有向线段所成的比为,证明:; (2) 设直线的方程是,过两点的圆与抛物线在点处有共同的切线,求圆的方程.
(本小题满分14分) 已知奇函数有最大值, 且, 其中实数是正整数. 求的解析式; 令, 证明(是正整数).