(本小题满分12分)如图,三棱锥中,底面于,,点,点分别是的中点.(1) 求证:侧面⊥侧面;(2) 求点到平面的距离;(3) 求异面直线与所成的角的余弦.
用0,1,2,3,4,5共6个数字,可以组成多少个没有重复数字的6位奇数?
有A,B,C三个城市,上午从A城去B城有5班汽车,2班火车,都能在12:00前到达B城,下午从B城去C城有3班汽车,2班轮船.某人上午从A城出发去B城,要求12:00前到达,然后他下午去C城,问有多少种不同的走法?
设是定义在上的函数,且.(1)若,求;(2)若,求.
从射击、乒乓球、跳水、田径四个大项的雅典奥运冠军中选出10名作“夺冠之路”的励志报告.(1)若每个大项中至少选派两人,则名额分配有几种情况?(2)若将10名冠军分配到11个院校中的9个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法?
张昊同学从书店买了2本《读者》、3本《少年文艺》和2本《中学生数理化》,当他读完最后一本《少年文艺》时,他才发现《中学生数理化》一本也没读.请问,到此时为止,张昊同学有多少种不同的读书次序.