如图,已知圆,圆.(1)若过点的直线被圆截得的弦长为,求直线的方程;(2)设动圆同时平分圆、圆的周长.①求证:动圆圆心在一条定直线上运动;②动圆是否过定点?若过,求出定点的坐标;若不过,请说明理由.
(本小题满分12分)已知圆,直线,。 (1)证明:不论取什么实数,直线与圆恒交于两点; (2)求直线被圆截得的弦长最小时的方程.
(本小题满分12分)如图,在三棱锥中,,,°,平面平面,,分别为,中点. (1)求证:∥平面; (2)求证:; (3)求三棱锥的体积.
(本小题满分12分)已知全集,集合,,. (1)求,; (2)若,求的取值范围.
已知偶函数,对任意,恒有。求: (1),,的值; (2)的表达式; (3)在上的最值。
如图是一个直三棱柱被削去一部分后的几何体的直观图与三视图中的侧视图、俯视图.在直观图中,M是BD的中点.又已知侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示. (1)求证:ME∥平面ABC; (2)试问在棱DC上是否存在点N,使NM⊥平面BDE? 若存在,确定点N的位置;若不存在,请说明理由.