抛物线的顶点在原点,焦点在射线x-y+1=0上(1)求抛物线的标准方程(2)过(1)中抛物线的焦点F作动弦AB,过A、B两点分别作抛物线的切线,设其交点为M,求点M的轨迹方程,并求出的值
已知点分别是椭圆长轴的左、右端点,点是椭圆的右焦点.点在椭圆上,且位于轴的上方,. (1)求点的坐标; (2)设椭圆长轴上的一点, 到直线的距离等于,求椭圆上的点到点的距离的最小值
在数列中,,当时,其前项和满足. (1)求; (2)设,求数列的前项和. (3)求;
已知函数满足且对于任意, 恒有成立. (1)求实数的值; (2)解不等式.
已知向量:a=(2sinx,2 sinx),b=(sinx,cosx).为常数) (1)若,求的最小正周期; (2)若在[上最大值与最小值之和为5,求t的值; (3)在(2)条件下先按平移后(︱︱最小)再经过伸缩变换后得到求.
已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆. (1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求圆心的轨迹方程.