设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足”(I)证明:函数是集合M中的元素;(II)证明:函数具有下面的性质:对于任意,都存在,使得等式成立。 (III)若集合M中的元素具有下面的性质:若的定义域为D,则对于任意[m,n],都存在,使得等式成立。试用这一性质证明:对集合M中的任一元素,方程只有一个实数根。
.
已知函数的最小正周期为(Ⅰ)求的值; (Ⅱ)若不等式在上恒成立,求实数的取值范围.
若有最大值9和最小值3,求实数 的值
已知函数,R的最大值是1,其图像经过点.(Ⅰ)求;(Ⅱ)求的单调递增区间;(Ⅲ)函数的图象经过怎样的平移可使其对应的函数成为奇函数
设向量a =, b =(其中实数不同时为零),当时,有a⊥b;当时,有a∥b.(Ⅰ)求函数解析式;(Ⅱ)设,且,求.