(本小题满分14分)如图,过抛物线的对称轴上任一点作直线与抛物线交于两点,点是点关于原点的对称点.(1) 设点分有向线段所成的比为,证明:; (2) 设直线的方程是,过两点的圆与抛物线在点处有共同的切线,求圆的方程.
已知椭圆的离心率,直线经过椭圆C的左焦点.(I)求椭圆C的方程;(II)若过点的直线与椭圆C交于A,B两点,设P为椭圆上一点,且满足(其中O为坐标原点),求实数t的取值范围.
已知等差数列的前n项和为,满足,为递增的等比数列,且是方程的两个根.(I)求数列,的通项公式;(II)若数列满足,求数列的前n项和.
如图,在三棱柱中,四边形都为矩形.(I)设D是AB的中点,证明:直线平面; (II)在中,若,证明:直线平面.
已知函数.(I)求函数的最小正周期;(II)将函数的图象向左平移个单位,得到函数的图象.在中,角A,B,C的对边分别为,若,求的面积.
某省为了研究雾霾天气的治理,一课题组对省内24个城市进行了空气质量的调查,按地域特点把这些城市分成了甲、乙、丙三组.已知三组城市的个数分别为4,8,12,课题组用分层抽样的方法从中抽取6个城市进行空气质量的调查.(I)求每组中抽取的城市的个数;(II)从已抽取的6个城市中任抽两个城市,求两个城市不来自同一组的概率.