已知反比例函数y=的图象与二次函数y=ax2+x-1的图象相交于点(2,2)(1)求a和k的值;(2)反比例函数的图象是否经过二次函数图象的顶点,为什么?
已知A(,0),直线与x轴交于点F,与y轴交于点B,直线l∥AB且交y轴于点C,交x轴于点D,点A关于直线l的对称点为A′,连接AA′、A′D.直线l从AB出发,以每秒1个单位的速度沿y轴正方向向上平移,设移动时间为t. (1)求点A′的坐标(用含t的代数式表示); (2)求证:AB=AF; (3)过点C作直线AB的垂线交直线于点E,以点C为圆心CE为半径作⊙C,求当t为何值时,⊙C与△AA′D三边所在直线相切?
如图,AB是⊙O的直径,AB=4,过点B作⊙O的切线,C是切线上一点,且BC=2,P是线段OA上一动点,连结PC交⊙O于点D,过点P作PC的垂线,交切线BC于点E,交⊙O于点F,连结DF交AB于点G. (1)当P是OA的中点时,求PE的长; (2)若∠PDF=∠E,求△PDF的面积.
把球放在长方体纸盒内,球的一部分露出盒外,如下所示为正视图.已知EF=CD=16厘米,求出这个球的半径.
已知ABCD的两边AB、AD的长是关于x的方程的两个实数根. (1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长; (2)若AB的边长为2,那么ABCD的周长是多少?
省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环; (2)分别计算甲、乙六次测试成绩的方差; (3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由. 计算方差的公式:s2=[(x1-)2+(x2-)2++(xn-)2]