(本小题满分12分)如图,角的始边落在轴上,其始边、终边分别与单位圆交于点、(),△为等边三角形.(1)若点的坐标为,求的值;(2)设,求函数的解析式和值域.
(本小题满分12分)在中,已知,,.(Ⅰ)求的值;(Ⅱ)求的值.
(本小题满分10分)解不等式
本小题满分14分)已知函数的图像与函数的图象相切,记 (1)求实数b的值及函数F(x)的极值; (2)若关于x的方程F(x)=k恰有三个不等的实数根,求实数k的取值范围.
(本小题满分14分)椭圆的两个焦点F1、F2,点P在椭圆C上,且P F1⊥PF2,,| P F1|=| ,P F2|=.(I)求椭圆C的方程;(II)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程。
(本小题满分13分)某港口要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇.(I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.