.(本小题14分)已知函数,其中为参数,且.(1)当时,判断函数是否有极值,说明理由;(2)要使函数的极小值大于零,求参数的取值范围;(3)若对(2)中所求的取值范围内的任意参数,函数在区间内都是增函数,求实数的取值范围。
用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?
已知:函数f(x)=x3﹣6x+5,x∈R,(1)求:函数f(x)的单调区间和极值;(2)若关于x的方程f(x)=a有3个不同实根,求:实数a的取值范围;(3)当x∈(1,+∞)时,f(x)≥k(x﹣1)恒成立,求:实数k的取值范围.
设函数f(x)=﹣x3+2ax2﹣3a2x+b,0<a<1.(1)求函数f(x)的单调区间、极值;(2)若x∈[0,3a],试求函数f(x)的最值.
已知函数f(x)=﹣x3+3x2+9x+a.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若f(x)在区间[﹣2,2]上的最大值为20,求它在该区间上的最小值.
已知函数f(x)=x3﹣3x.(1)求函数f(x)在[﹣3,]上的最大值和最小值;(2)过点P(2,﹣6)作曲线y=f(x)的切线,求此切线的方程.