(本小题满分12分)已知数列的前项和为,且.(1)试求的通项公式;(2)若数列满足:,试求的前项和.
如图,底面△为正三角形的直三棱柱中,,,是的中点,点在平面内,. (Ⅰ)求证:; (Ⅱ)求证:∥平面;(Ⅲ)求二面角的大小.
在中,分别为内角的对边,且.(Ⅰ)求角的大小;(Ⅱ)若,,求边的长.
如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于,而与抛物线交于两点,且.(Ⅰ)求椭圆的方程;(Ⅱ)若过的直线与椭圆相交于两点和,设为椭圆上一点,且满足(为坐标原点),求实数的取值范围.
已知函数,且。(1)若函数在处的切线与轴垂直,求的极值。(2)若函数在,求实数a的值。
如图所示,已知AC ⊥平面CDE, BD ∥AC , 为等边三角形,F为ED边上的中点,且,(Ⅰ)求证:CF∥面ABE;(Ⅱ)求证:面ABE ⊥平面BDE;(Ⅲ)求该几何体ABECD的体积。