(本题分12分)从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;(Ⅱ)若抽取后不放回,设抽完红球所需的次数为,求的分布列及期望.
对于给定数列,如果存在实常数使得对于任意都成立,我们称数列是 “线性数列”.(1)若,,,数列、是否为“线性数列”?若是,指出它对应的实常数,若不是,请说明理由;(2)证明:若数列是“线性数列”,则数列也是“线性数列”;(3)若数列满足,,为常数.求数列前项的和.
在数列{an}中,a1=,an+1=,求a2、a3、a4的值,由此猜想数列{an}的通项公式,并用数学归纳法证明你的猜想.
有6名男医生,4名女医生.(1)选3名男医生,2名女医生,让这5名医生到5个不同地区去巡回医疗,共有多少种不同方法?(2)把10名医生分成两组,每组5人且每组都要有女医生,则有多少种不同分法?若将这两组医生分派到两地去,并且每组选出正副组长两人,又有多少种不同方案?
复数,若,求的值.
设和是函数的两个极值点,其中,.(1)若曲线在点处的切线垂直于轴,求实数的值;(2)求的取值范围;(3)若,求的最大值(是自然对数的底数).