已知首项为 3 2 的等比数列 { a n } 的前 n 项和为 S n ( n ∈ N + ) , 且 - 2 S 2 , S 3 , 4 S 4 成等差数列. (Ⅰ) 求数列 { a n } 的通项公式; (Ⅱ) 证明 S n + 1 S n ≤ 13 6 ( n ∈ N + ) .
设函数(、),若,且对任意实数()不等式0恒成立.(Ⅰ)求实数、的值;(Ⅱ)当[-2,2]时,是单调函数,求实数的取值范围.
动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D再回到A. 设表示P点的行程,表示PA的长,求关于的函数解析式。
证明函数 是增函数,并求函数的最大值和最小值。
画出函数的图象,并求其函数的值域。
证明函数是奇函数。