设关于的函数,其中为上的常数,若函数在处取得极大值(1)求实数的值(2)若函数的图像与直线有两个交点,求实数的取值范围(3)设函数,若对任意的,恒成立,求实数的取值范围.
已知等差数列满足:. (Ⅰ)求的通项公式及前项和; (Ⅱ)若等比数列的前项和为,且,求.
已知函数. (Ⅰ)若函数在上为增函数,求实数的取值范围; (Ⅱ)当且时,证明: .
已知椭圆:的左、右焦点分别为、,椭圆上的点满足,且△的面积为. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆的左、右顶点分别为、,过点的动直线与椭圆相交于、两点,直线与直线的交点为,证明:点总在直线上.
已知数列的前项和为,且. (Ⅰ)求数列的通项公式; (Ⅱ)设,,求使恒成立的实数的取值范围.
设,函数满足. (Ⅰ)求的单调递减区间; (Ⅱ)设锐角△的内角、、所对的边分别为、、,且, 求的取值范围.