(本小题共12分)甲、乙两个射手进行射击训练,甲击中目标的概率为,乙击中目标的概率为,每人各射击两发子弹为一个“单位射击组”,若甲击中目标的次数比乙击中目标的次数多,则称此组为“单位进步组”.(1)求一个“单位射击组”为“单位进步组”的概率;(2)记完成三个“单位射击组”后出现“单位进步组”的次数,求的分布列与数学期望.
(本大题满分12分) 平面内有向量,点X为直线OP上的一动点。 (1)当取最小值时,求的坐标; (2)当点X满足(1)的条件和结论时,求的值.
已知数列中. (1)证明:数列是等比数列,并求出数列的通项公式; (2)记,数列的前n项和为,求使的n的最小值
设椭圆过点(,1),且左焦点为. (1)求椭圆的方程; (2)判断是否存在经过定点的直线与椭圆交于两点并且满足·,若存在求出直线的方程,不存在说明理由.
已知椭圆,求以点为中点的弦所在的直线方程.
已知双曲线中心与椭圆共焦点,他们的离心率之和为,求双曲线的标准方程