某校甲、乙、丙同学一同调查了北京的二环路、三环路、四环路高峰段的车流量.甲同学说:“二环路车流量为每小时10000辆”.乙同学说:“四环路比三环路车流量每小时多2000辆”.丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”.请根据他们提供的信息,求出高峰时段三环路、四环路的车流量各是多少?
如图,直线与x轴、y轴分别交于点A、C,经过A、C两点的抛物线与x轴的负半轴上另一交点为B,且tan∠CBO=3. (1)求该抛物线的解析式及抛物线的顶点D的坐标; (2)若点P是射线BD上一点,且以点P、A、B为顶点的三角形与△ABC相似,求点P的坐标.
在△ABC中,D是BC的中点,且AD=AC,DE⊥BC,与AB相交于点E,EC与AD相交于点F. (1)求证:△ABC∽△FCD; (2)若DE=3,BC=8,求△FCD的面积.
已知:如图,△ABC中,点D、E是边AB上的点,CD平分∠ECB,且. (1)求证:△CED∽△ACD; (2)求证:.
某商场为了方便顾客使用购物车,将滚动电梯由坡角30°的坡面改为坡度为1:2.4的坡面.如图,BD表示水平面,AD表示电梯的铅直高度,如果改动后电梯的坡面AC长为13米,求改动后电梯水平宽度增加部分BC的长(结果保留根号).
如图,点D、E分别在△ABC的边BA、CA的延长线上,且DE∥BC,,F为AC的中点. (1)设,,试用的形式表示、;(x、y为实数) (2)作出在、上的分向量.(保留作图痕迹,不写作法,写出结论)