某中学开展“汉字听写大赛”活动, 为了解学生的参与情况, 在该校随机抽取了四个班级学生进行调查, 将收集的数据整理并绘制成图 1 和图 2 两幅尚不完整的统计图, 请根据图中的信息, 解答下列问题:
(1) 这四个班参与大赛的学生共 人;
(2) 请你补全两幅统计图;
(3) 求图 1 中甲班所对应的扇形圆心角的度数;
(4) 若四个班级的学生总数是 160 人, 全校共 2000 人, 请你估计全校的学生中参与这次活动的大约有多少人 .
如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F. (1)求证:EO=FO; (2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论. (3)在(2)的条件下,当△ABC满足什么条件时,四边形AECF是正方形?
如图,正方形ABCD绕点A逆时针旋转no后得到正方形AEFG,EF与CD交于点O. (1)以图中已标有字母的点为端点连结两条线段(正方形的对角线除外),要求所连结的两条线段相交且互相垂直,并说明这两条线段互相垂直的理由; (2)若正方形的边长为2cm,重叠部分(四边形AEOD)的面积为cm2,求旋转的角度n.
如图,在和中,,,>,,点、、在直线上, (1)按下列要求画图(保留画图痕迹): ①画出点关于直线的对称点,连接、; ②以点为旋转中心,将(1)中所得按逆时针方向旋转,使得旋转后的线段与重合,得到(A),画出. (2)解决下面问题: ①线段和线段的位置关系是.并说明理由. ②求∠的度数.
如图,在四边形中,E、F、G、H分别是、、、的中点. (1)请判断四边形的形状.并说明为什么? (2)若使四边形为正方形,那么四边形的对角线应具有怎样的性质?
在梯形中,∥,,为中点. (1)求证:≌.(2)若平分,且,求的长.