已知等比数列的前项和为,且是与2的等差中项,等差数列中,,点在直线上.⑴求和的值;⑵求数列的通项和;⑶ 设,求数列的前n项和.
已知集合.(1)是否存在实数,使得集合中所有整数的元素和为28?若存在,求出符合条件的,若不存在,请说明理由。(2)若以为首项,为公比的等比数列前项和记为,对于任意的,均有,求的取值范围。
已知.(1)求函数的图像在处的切线方程;(2)设实数,求函数在上的最大值(3)证明对一切,都有成立.
如图,在矩形中,,以为圆心1为半径的圆与交于(圆弧为圆在矩形内的部分)(1)在圆弧上确定点的位置,使过的切线平分矩形ABCD的面积;(2)若动圆与满足题(1)的切线及边都相切,试确定的位置,使圆为矩形内部面积最大的圆.
(本小题满分15分)平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(c,0)三点,其中c>0.(1)求⊙M的标准方程(用含的式子表示);(2)已知椭圆(其中)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.①求椭圆离心率的取值范围;②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.
(本小题满分16分)某仓库为了保持库内的湿度和温度,四周墙上均装有如图所示的自动通风设施.该设施的下部ABCD是等腰梯形,其中高0.5米,AB=1米, CD=2a(a>)米.上部CmD是个半圆,固定点E为CD的中点.△EMN是由电脑控制其形状变化的三角通风窗(阴影部分均不通风),MN是可以沿设施边框上下滑动且始终保持和CD平行的伸缩横杆.(1)设MN与AB之间的距离为x米,试将三角通风窗EMN的通风面积S(平方米)表示成关于x的函数;(2)当MN与AB之间的距离为多少米时,三角通风窗EMN的通风面积最大?并求出这个最大面积.