在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)若从中任取一球,球上的数字为偶数的概率为多少?(2)若从中任取一球(不放回),再从中任取一球,请用画树状图或列表格的方法求出两个球上的数字之和为偶数的概率.(3)若设计一种游戏方案:从中任取两球,两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?说明理由.
在函数中,我们规定:当自变量增加一个单位时,因变量的增加量称为函数的平均变化率.例如,对于函数y=3x+1,当自变量x增加1时,因变量y=3(x+1)+1=3x+4,较之前增加3,故函数y=3x+1的平均变化率为3. (1)①列车已行驶的路程s(km)与行驶的时间t(h)的函数关系式是s=300t,该函数的平均变化率是;其蕴含的实际意义是; ②飞机着陆后滑行的距离y(m)与滑行的时间x(s)的函数关系式是y=-1.5x2+60x,求该函数的平均变化率; (2)通过比较(1)中不同函数的平均变化率,你有什么发现; (3)如图,二次函数y=ax2+bx+c的图像经过第一象限内的三点A、B、C,过点A、B、C作x轴的垂线,垂足分别为D、E、F,AM⊥BE,垂足为M,BN⊥CF,垂足为N,DE=EF,试探究△AMB与△BNC面积的大小关系,并说明理由.
小明设计了一个“简易量角器”:如图,在△ABC中,∠C=90°,∠A=30°,CA=30 cm,在AB边上有一系列点P1,P2,P3…P8,使得∠P1CA=10°,∠P2CA=20°,∠P3CA=30°,…∠P8CA=80°. (1)求P3A的长(结果保留根号); (2)求P5A的长(结果精确到1 cm,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20,≈1.7); (3)小明发现P1,P2,P3…P8这些点中,相邻两点距离都不相同,于是计划用含45°的直角三角形重新制作“简易量角器”,结果会怎样呢?请你帮他继续探究.
一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地,求出发后第一小时内的行驶速度.
如图,正方形网格中每个小正方形的边长均为1,△ABC的三个顶点都在格点上,现将△ABC绕着格点O顺时针旋转90°. (1)画出△ABC旋转后的△A'B'C'; (2)求点C旋转过程中所经过的路径长; (3)点B'到线段A'C'的距离为多少.
如图,在平面直角坐标系中,四边形ABCD为矩形,BC平行于x轴,AB=6,点A的横坐标为2,反比例函数y=的图像经过点A、C. (1)求点A的坐标; (2)求经过点A、C所在直线的函数关系式. (3)请直接写出AD长.