(本小题满分14分)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东 (其中,)且与点A相距10海里的位置C. (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由
(本小题满分10分)已知,请写出函数的值域、最小正周期、单调区间及奇偶性.
(本题14分)设圆满足:(1)截轴所得弦长为2;(2)被轴分成两段弧,其弧长的比为,在满足条件(1)(2)的所有圆中,求圆心到直线的距离最小的圆的方程.
(本题14分)如下图,在三棱锥中,分别是的中点,,.(1)求证:平面;(2)求异面直线与所成角的余弦值;(3)求点到平面的距离.
(本题14分)一个圆锥的底面半径为,高为,其中有一个高为的内接圆柱:(1)求圆锥的侧面积;(2)当为何值时,圆柱侧面积最大?并求出最大值.
(本题14分)袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:(1)3只全是红球的概率;(2)3只颜色全相同的概率;(3)3只颜色不全相同的概率.