(本小题满分14分)在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东且与点A相距40海里的位置B,经过40分钟又测得该船已行驶到点A北偏东 (其中,)且与点A相距10海里的位置C. (1)求该船的行驶速度(单位:海里/小时);(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由
(本小题满分10分) 已知整数≥4,集合的所有3个元素的子集记为. (1)当时,求集合中所有元素之和. (2)设为中的最小元素,设=,试求.
(本小题满分10分) 如图所示,在棱长为2的正方体中,点分别在棱上,满足, 且. (1)试确定、两点的位置. (2)求二面角大小的余弦值.
D.(选修4—5:不等式选讲) 已知均为正数,求证:.
C.(选修4—4:坐标系与参数方程) 在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正 半轴建立平面直角坐标系,直线的参数方程为(为参数),求直线被截 得的弦的长度.
B.(选修4—2:矩阵与变换) 已知矩阵,若矩阵对应的变换把直线:变为 直线,求直线的方程.