(本小题满分12分)在平面直角坐标系中,点A(-1,-2)、B(2,3)、C(-2,-1).(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;(2)设实数t满足,求t的值.
某一种大型商品在A、B两地出售,且价格相同.某地居民从两地之一购得商品后运回的费用是:按单位距离计算,A地的运费是B地运费的3倍,已知A、B两地距离10 km.顾客选择A或B地购买这件商品的标准是:包括运费的总费用较低.求A、B两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民应如何选择购货地点.
若x、y满足(x-1)2+(y+2)2=4,求S=2x+y的最大值和最小值.
已知圆C:(x-1)2+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (m∈R). 求直线l被圆C截得的弦长的最短长度及此时的直线方程.
已知点P(6,4)与定直线l1:y=4x,直线l2过点P与直线l1相交于第一象限内的点Q,且与x轴的正半轴交于点M,求使△OMQ面积最小的直线l2的方程.
已知△ABC的顶点A(1,2)、B(-1,-1),直线l:2x+y-1=0是 △ABC的一个内角平分线,求BC边所在直线的方程及点C到AB的距离.