在平面直角坐标系中,椭圆为(1)若一直线与椭圆交于两不同点,且线段恰以点为中点,求直线的方程;(2)若过点的直线(非轴)与椭圆相交于两个不同点试问在轴上是否存在定点,使恒为定值?若存在,求出点的坐标及实数的值;若不存在,请说明理由.
(本试卷共40分,考试时间30分钟) 21.(选做题)本大题包括A,B,C,D共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤. A. 选修4-1:几何证明选讲 如图,是边长为的正方形,以为圆心,为半径的圆弧与以为直径的半⊙O交于点,延长交于. (1)求证:是的中点;(2)求线段的长.
(本小题共16分) 已知数列各项均不为0,其前项和为,且对任意都有(为大于1的常数),记f(n). (1)求; (2)试比较与的大小(); (3)求证:(2n-1)f(n)≤f(1)+f(2)+…+f(2n-1) ≤[1-()2n-1] (n∈N*)
(本小题共16分) 已知M(p, q)为直线x+y-m=0与曲线y=-的交点,且p<q,若f(x)=,λ、μ为正实数。求证:|f()-f()|<|p-q|
(本小题共16分) 已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为. (1)①若圆过椭圆的两个焦点,求椭圆的离心率; ②若椭圆上存在点,使得,求椭圆离心率的取值(2)设直线与轴、轴分别交于点,,求证:为定值.
(本小题满分14分) 如图:设工地有一个吊臂长的吊车,吊车底座高,现准备把一个底半径为高的圆柱形工件吊起平放到高的桥墩上,问能否将工件吊到桥墩上?(参考数据:)