解方程:(1); (2)(配方法) 计算:(3) (4)
某兴趣小组为了测量大楼 CD 的高度,先沿着斜坡 AB 走了52米到达坡顶点 B 处,然后在点 B 处测得大楼顶点 C 的仰角为 53 ° ,已知斜坡 AB 的坡度为 i = 1 : 2 . 4 ,点 A 到大楼的距离 AD 为72米,求大楼的高度 CD .
(参考数据: sin 53 ° ≈ 4 5 , cos 53 ° ≈ 3 5 , tan 53 ° ≈ 4 3 )
如图,在 ΔABC 中, ∠ ACB = 90 ° ,点 E 在 AC 的延长线上, ED ⊥ AB 于点 D ,若 BC = ED ,求证: CE = DB .
先化简,再求值: ( 2 a - 12 a a + 2 ) ÷ a - 4 a 2 + 4 a + 4 ,其中 a 满足 a 2 + 2 a - 3 = 0 .
计算: 2 - 1 + | 6 - 3 | + 2 3 sin 45 ° - ( - 2 ) 2020 · ( 1 2 ) 2020 .
如图1,在等腰三角形 ABC 中, ∠ A = 120 ° , AB = AC ,点 D 、 E 分别在边 AB 、 AC 上, AD = AE ,连接 BE ,点 M 、 N 、 P 分别为 DE 、 BE 、 BC 的中点.
(1)观察猜想.
图1中,线段 NM 、 NP 的数量关系是 , ∠ MNP 的大小为 .
(2)探究证明
把 ΔADE 绕点 A 顺时针方向旋转到如图2所示的位置,连接 MP 、 BD 、 CE ,判断 ΔMNP 的形状,并说明理由;
(3)拓展延伸
把 ΔADE 绕点 A 在平面内自由旋转,若 AD = 1 , AB = 3 ,请求出 ΔMNP 面积的最大值.