如图1,在正方形中,点分别为边的中点,相交于点,则可得结论:①;②.(不需要证明)(1)如图2,若点不是正方形的边的中点,但满足,则上面的结论①,②是否仍然成立?(请直接回答“成立”或“不成立”)(2)如图3,若点分别在正方形的边的延长线和的延长线上,且,此时上面的结论1,2是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由.(3)如图4,在(2)的基础上,连接和,若点分别为的中点,请判断四边形是“矩形、菱形、正方形、等腰梯形”中的哪一种?并写出证明过程.
运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.(1)如图,在等腰三角形ABC中,AB=AC,AC边上的高为,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为、.连接AM,可得结论+=.当点M在BC延长线上时,、、之间的等量关系式是 .(直接写出结论不必证明).(2)应用:平面直角坐标系中有两条直线:、:,若上的一点M到的距离是1.请运用(1)的条件和结论求出点M的坐标.
在△ABC中,AB=CB,∠ABC=90º,F为AB延长线上一点,点E在BC上,且AE=CF. (1)求证:Rt△ABE≌Rt△CBF; (2)若∠CAE=30º,求∠ACF度数.
计算:.
解一元二次方程: .
( )-1-∣-2∣+2sin30º +()º