甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据信息,问哪位同学获胜?(转身拐弯处路程可忽略不计)
假期里,小红和小慧去买菜,三次购买的西红柿价格和数量如下表:
(1)小红和小慧购买西红柿数量的中位数是 ,众数是 ; (2)从平均价格看,谁买的西红柿要便宜些. 小亮的说法 每次购买单价相同,购买总量也相同,平均价格应该也一样,都是(4+3+2)÷3=3(元/千克),所以两人购买的西红柿一样便宜. 小明的说法 购买的总量虽然相同,但小红花了16元,小慧花了18元,平均价格不一样,所以购买的西红柿便宜 思考小亮和小明的说法,你认为谁说得对?为什么? (3)小明在直角坐标系中画出反比例函数的图象,图象经过点P(如图),点P的横、纵坐标分别为小红和小慧购买西红柿价格的平均数. ①求此反比例函数的关系式; ②判断点Q(2,5)是否在此函数图象上.
定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.
小刚用一张半径为12cm的扇形纸板做一个如图所示的圆锥形小丑帽子侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为5cm,那么这张扇形纸板的面积是cm2.
已知,在矩形ABCD中,AB=6,BC=8,将矩形ABCD绕点D按顺时针方向旋转,得到矩形A′B′C′D′,直线DA′,B′C′分别与直线BC相交于点P,Q. (1)①如图1,当矩形A′B′C′D的顶点B′落在射线DC上时 ; ②如图2,当矩形A′B′C′D的顶点B′落在线段BC的延长线上时,DP= ; (2)①如图3,当点P位于线段BC上时,求证:DP=PQ; ②在矩形ABCD旋转过程中(旋转角0°<α≤90°),请直接写出BP=BQ时,CP的长: . (3)在矩形ABCD旋转过程中(旋转角45°<α≤180°),以点D,B′,P,Q为顶点的四边形能否成为平行四边形?如果能,请直接写出此时CP的长(或CP的取值范围);如果不能,请简要说明理由.
如图,已知两条直线a∥b,直线a、b间的距离为h,点M、N在直线a上,MN=x;点P在直线b上,并且x+h=40.(1)记△PMN的面积为S,①求S与x的函数关系,并求出MN的长为多少时△PMN的面积最大?最大面积是多少?②当△PMN的面积最大时,能求出∠PMN的正切值吗?为什么?(2)请你用尺规作图的方法确定△PMN的周长最小时点P的位置(要求不写作法,但保留作图痕迹);并判断△PMN的形状;(3)请你在(2)②中得到的△PMN内求一点P,使得AP+AM+AN的和最小,求出AP+AM+AN和的最小值.