(年贵州黔南12分)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.
如图,AD=BC,AC=BD,求证:△EAB是等腰三角形.
如图,D、E分别是AB、AC的中点,CD⊥AB于D,BE⊥AC于E,求证:AC=AB.
上午8时,一条船从海岛A出发,以20海里/时的速度向下北航行,11时到达海岛B处,从A、B望灯塔C,测得∠NAC=40°,∠NBC=80°,求从海岛B到灯塔C的距离.
如图,在△ABC中,AB=AC,∠A=52°,AB的垂直平分线MN交AC于点D.求∠DBC的度数.
如图,∠A=∠B,CE∥DA,CE交AB于E.求证:△CEB是等腰三角形.