如图:在多面体中,,,,。(1)求证:;(2)求证:;(3)求二面角的余弦值。
(本小题满分10分)选修4—4;坐标系与参数方程 已知直线:(t为参数),圆: (为参数), (Ⅰ)当=时,求与的交点坐标; (Ⅱ)过坐标原点O作的垂线,垂足为A,P为OA的中点,当变化时,求P点轨迹的参数方程,并指出它是什么曲线;
已知抛物线C的顶点在原点, 焦点为F(0, 1). (Ⅰ) 求抛物线C的方程; (Ⅱ)在抛物线C上是否存在点P, 使得过点P 的直线交C于另一点Q, 满足PF⊥QF, 且PQ与C在点P处的切线垂直? 若存在, 求出点P的坐标; 若不存在,请说明理由.
(本题15分)已知函数. (I)若函数在点处的切线斜率为4,求实数的值; (II)若函数在区间上存在零点,求实数的取值。
已知为平行四边形,,,,是长方形,是的中点,平面平面, (Ⅰ)求证:; (Ⅱ)求直线与平面所 成角的正切值.
已知数列是首项为1公差为正的等差数列,数列是首项为1的等比数列,设,且数列的前三项依次为1,4,12, (1)求数列、的通项公式; (2)若等差数列的前n项和为Sn,求数列的前项的和Tn.