已知函数.(1)讨论函数在定义域内的极值点的个数;(2)若函数在处取得极值,对,恒成立,求实数的取值范围.
(本小题满分12分). 已知函数在上是减函数,在上是增函数,函数在上有三个零点,且1是其中一个零点. (1)求的值; (2)求的取值范围;
(本小题满分12分)如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC平面ABC. (1)证明:平面ACD平面; (2)若,,,试求该简单组合体的体积V.
(本小题满分12分) 某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组……第五组.下图是按上述分组方法得到的频率分布直方图. (I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数; (II)设、表示该班某两位同学的百米测试成绩,且已知. 求事件“”的概率.
(本小题满分12分) 已知的三个内角A、B、C所对的边分别为,向量,且. (1)求角A的大小;(2)若,试判断取得最大值时形状.
如图,已知椭圆上两定点,直线与椭圆相交于A,B两点(异于P,Q两点) (1)求证:为定值; (2)当时,求A、P、B、Q四点围成的四边形面积的最大值。