设双曲线C:的左、右顶点分别为A1、A2,垂直于x轴的直线m与双曲线C交于不同的两点。(1)若直线m与x轴正半轴的交点为T,且,求点T的坐标;(2)求直线A1P与直线A2Q的交点M的轨迹E的方程;(3)过点F(1,0)作直线l与(Ⅱ)中的轨迹E交于不同的两点A、B,设,若(T为(1)中的点)的取值范围。
已知为等比数列,是等差数列, (Ⅰ)求数列的通项公式及前项和; (Ⅱ)设,,其中,试比较与的大小,并加以证明.
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点 (Ⅰ)证明:BC1//平面A1CD; (Ⅱ)设AA1=AC=CB=2,AB=,求三棱锥C一A1DE的体积.
一中食堂有一个面食窗口,假设学生买饭所需的时间互相独立,且都是整数分钟,对以往学生买饭所需的时间统计结果如下:
从第一个学生开始买饭时计时. (Ⅰ)估计第三个学生恰好等待4分钟开始买饭的概率; (Ⅱ)表示至第2分钟末已买完饭的人数,求的分布列及数学期望
已知角的顶点在原点,始边与轴的正半轴重合,终边经过点. (Ⅰ)求的值; (Ⅱ)若函数,求函数在区间上的取值范围.
已知函数. (Ⅰ)若函数在区间其中上存在极值,求实数的取值范围; (Ⅱ)如果当时,不等式恒成立,求实数的取值范围.