有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定。大桥上的车距d(m)与车速v(km/h)和车长l(m)的关系满足:(k为正的常数),假定车身长为4m,当车速为60(km/h)时,车距为2.66个车身长。(1)写出车距d关于车速v的函数关系式;(2)应规定怎样的车速,才能使大桥上每小时通过的车辆最多?
甲、乙两地相距1000,货车从甲地匀速行驶到乙地,速度不得超过80,已知货车每小时的运输成本(单位:元)由可变成本和固定成本组成,可变成本是速度平方的倍,固定成本为a元. (1)将全程运输成本y(元)表示为速度v()的函数,并指出这个函数的定义域; (2)为了使全程运输成本最小,货车应以多大的速度行驶?
如图,在四棱锥P-ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证: (1)PA∥平面MDB; (2)PD⊥BC.
在△ABC中,设角A,B,C的对边分别为a,b,c,且. (1)求角A的大小; (2)若,,求边c的大小.
设等差数列的前项和为,已知,. (1)求; (2)若从中抽取一个公比为的等比数列,其中,且,. ①当取最小值时,求的通项公式; ②若关于的不等式有解,试求的值.
已知函数,. (1)若,则,满足什么条件时,曲线与在处总有相同的切线? (2)当时,求函数的单调减区间; (3)当时,若对任意的恒成立,求的取值的集合.