已知圆C:(x-1) +(y-2) =25,直线L:(2m+1)x+(m+1)y-7m-4=0(m∈R)(1)证明:无论m取什么实数,L与圆恒交于两点.(2)求直线被圆C截得的弦长最小时L的方程.
已知函数(R). (1)当取什么值时,函数取得最大值,并求其最大值; (2)若为锐角,且,求的值.
(本小题满分10分)选修4—5;不等式选讲. 设不等式的解集是,. (I)试比较与的大小; (II)设表示数集的最大数.,求证:.
(本小题满分10分)选修4—4坐标系与参数方程. 在平面直角坐标系中,曲线的参数方程为(,为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点. (I)求曲线,的方程; (II)若点,在曲线上,求的值.
(本小题满分10分) 选修4—1;几何证明选讲. 如图,A,B,C,D四点在同一圆上,与的延长线交于点,点在的延长线上. (Ⅰ)若,求的值; (Ⅱ)若,证明:.
(本小题满分12分)设函数,. (Ⅰ)当时,证明在是增函数; (Ⅱ)若,,求的取值范围.