解方程组:
解方程:.
如图,在△ABC中,∠C=60°,AC=2, BC=3.求tanB的值.
已知,求代数式的值.
如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上两点,经过A、C、B的抛物线的一部分与经过点A、D、B的抛物线的一部分组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,),点M是抛物线:的顶点.(1)求A、B两点的坐标.(2)“蛋线”在第四象限上是否存在一点P,使得的面积最大?若存在,求出面积的最大值;若不存在,请说明理由;(3)当为直角三角形时,直接写出m的值.______
以平面上一点O为直角顶点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ABO=∠DCO=30°.(1)点E、F、M分别是AC、CD、DB的中点,连接EF和FM.①如图1,当点D、C分别在AO、BO的延长线上时,=_______;②如图2,将图1中的△AOB绕点O沿顺时针方向旋转角(),其他条件不变,判断的值是否发生变化,并对你的结论进行证明;(2)如图3,若BO=,点N在线段OD上,且NO=3.点P是线段AB上的一个动点,在将△AOB绕点O旋转的过程中,线段PN长度的最小值为_______,最大值为_______.