如图所示,抛物线与轴交于点两点,与轴交于点以为直径作过抛物线上一点作的切线切点为并与的切线相交于点连结并延长交于点连结(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;(2)若四边形的面积为求直线的函数关系式;(3)抛物线上是否存在点,使得四边形的面积等于的面积?若存在,求出点的坐标;若不存在,说明理由.
解方程或不等式组(每小题4分,共8分)(1) (2)
如图,为直角三角形,,,;四边形 为矩形,,,且点、、、在同一条直线上,点与点重合.(1)求边的长;(2)将以每秒的速度沿矩形的边向右平移,当点与点 重合时停止移动,设与矩形重叠部分的面积为,请求出重叠部分的面积()与移动时间的函数关系式(时间不包含起始与终止时刻);(3)在(2)的基础上,当移动至重叠部分的面积为时,将沿边向上翻折,得到,请求出与矩形重叠部分的周长(可利用备用图).
有一座抛物线型拱桥,其水面宽为18米,拱顶离水面的距离为8米,货船在水面上的部分的横断面是矩形,如图建立平面直角坐标系.(1)求此抛物线的解析式,并写出自变量的取值范围;(2)如果限定的长为9米,的长不能超过多少米,才能使船通过拱桥?(3)若设,请将矩形的面积用含的代数式表示,并指出的取值范围.
一次函数的图象经过点,且分别与轴、轴交于点、.点在轴正半轴上运动,点在轴正半轴上运动,且.(1)求的值,并在给出的平面直角坐标系中画出该一次函数的图象;(2)求与满足的等量关系式.
数学老师将相关教学方法作为调查内容发到全年级名学生的手中,要求每位学生选出自己喜欢的一种,调查结果如下列统计图所示:(1)请你将扇形统计图和条形统计图补充完整;(2)写出学生喜欢的教学方法的众数;(3)针对调查结果,请你发表不超过30字的简短评说。