已知函数(1)求函数的值域;(2)若时,函数的最小值为,求的值和函数的最大值。
设的最大值为M。 (1)当时,求M的值。 (2)当取遍所有实数时,求M的最小值; (以下结论可供参考:对于,当同号时取等号) (3)对于第(2)小题中的,设数列满足,求证:。
已知函数,且(1)求的值域;(2)定义在R上的函数满足,且当时,求在R上的解析式。
各项均为正数的数列,,且对满足的正整数都有. (1)当时,求通项; (2)证明:对任意,存在与有关的常数,使得对于每个正整数,都有.
已知函数(Ⅰ)求函数f (x)的定义域(Ⅱ)确定函数f (x)在定义域上的单调性,并证明你的结论.(Ⅲ)若x>0时恒成立,求正整数k的最大值.
若动圆P恒过定点B(2,0),且和定圆外切.(1)求动圆圆心P的轨迹E的方程;(2)若过点B的直线l与曲线E交于M、N两点,试判断以MN为直径的圆与直线 是否相交,若相交,求出所截得劣弧的弧度数,若不相交,请说明理由.