已知椭圆的一个顶点为A(0,-1),焦点在x轴上,若右焦点到直线的距离为3。(1)求椭圆的方程;(2)设直线与椭圆相交于不同的两点M,N,当|AM|=|AN|时,求m的取值范围.
抛物线,直线过抛物线的焦点,交轴于点.(1)求证:;(2)过作抛物线的切线,切点为(异于原点),(ⅰ)是否恒成等差数列,请说明理由;(ⅱ)重心的轨迹是什么图形,请说明理由.
四棱锥底面是菱形,,,分别是的中点.(1)求证:平面⊥平面; (2)是上的动点,与平面所成的最大角为,求二面角的正切值.
已知等比数列的各项均为正数,且成等差数列,成等比数列.(1)求数列的通项公式;(2)已知,记,,求证:
在中,(1)求的值;(2)求的面积.
已知函数.(1)当时,解不等式;(2)若不等式恒成立,求实数的取值范围.