某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13, 14);第二组[14, 15),……,第五组[17, 18]. 下图是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m、n表示该班某两位同学的百米测试成绩,且已知m, n∈[13, 14)∪[17, 18]. 求事件“|m-n|>1”的概率.
(本小题满分12分) 四个大小相同的小球分别标有数字1、1、2、2,把它们放在一个盒子中,从中任意摸 出两个小球,它们的标号分别为,记. (1)求随机变量的分布列及数学期望; (2)设“函数在区间(2,3)上有且只有一个零点”为事件,求事件发生的概率.
(本小题满分10分) 在中,角的对边分别是, 且,,又. 求(1)角; (2)的值.
已知关于的不等式:的整数解有且仅有一个值为2. (1)求整数的值;(2)在(1)的条件下,解不等式:.
(本小题满分9分) 已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合.直线的参数方程为:(t为参数),曲线的极坐标方程为:. (Ⅰ)写出的直角坐标方程,并指出是什么曲线; (Ⅱ)设直线与曲线相交于、两点,求值.
(本小题满分9分)如图,四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<≦1). (Ⅰ)求证:对任意的(0、1),都有AC⊥BE: (Ⅱ)若二面角C-AE-D的大小为600C,求的值。