(本小题满分16分)已知数列中,且点在直线上.(1)求数列的通项公式;(2)若函数求函数的最小值;(3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立? 若存在,写出的解析式,并加以证明;若不存在,试说明理由.
(本小题满分13分)已知函数. (Ⅰ)当时,求函数的单调增区间; (Ⅱ)求函数在区间上的最小值.
数列满足,. (Ⅰ)求、、; (Ⅱ)求的表达式; (Ⅲ)令,求.
如图,在四棱锥中,平面,平面,,. (Ⅰ)求证:平面平面; (Ⅱ)求二面角的大小.
(本小题满分12分)甲、乙等名同学参加某高校的自主招生面试,已知采用抽签的方式随机确定各考生的面试顺序(序号为). (Ⅰ)求甲、乙两考生的面试序号至少有一个为奇数的概率; (Ⅱ)记在甲、乙两考生之间参加面试的考生人数为,求随机变量的分布列与期望.
已知函数的最小正周期为. (Ⅰ)求的解析式; (Ⅱ)设的三边满足,且边所对的角为,求此时函数的值域.