已知函数,.(1)求的最小正周期及值域;(2)求单调递增区间.
如图,已知长方形的两条对角线的交点为,且与所在的直线方程分别为. (1)求所在的直线方程; (2)求出长方形的外接圆的方程.
已知函数,. (1)求函数的极值;(2)若恒成立,求实数的值; (3)设有两个极值点、(),求实数的取值范围,并证明.
已知点,直线,动点P到点F的距离与到直线的距离相等. (1)求动点P的轨迹C的方程; (2)直线与曲线C交于A,B两点,若曲线C上存在点D使得四边形FABD为平行四边形,求b的值.
如图1,直角梯形中,,分别为边和上的点,且,.将四边形沿折起成如图2的位置,使. (1)求证:平面; (2)求平面与平面所成锐角的余弦值.
在中,角所对的边分别为,且. (1)求角的值;(2)若为锐角三角形,且,求的取值范围.