(本小题满分12分)已知命题:不等式恒成立,命题:不等式有解;若为真命题,为假命题,求的取值范围.
在数列中,,点在直线上. (Ⅰ)求数列的通项公式; (Ⅱ)记,求数列的前n项和.
已知函数,为自然对数的底数). (Ⅰ)当时,求的单调区间; (Ⅱ)若函数在上无零点,求最小值; (Ⅲ)若对任意给定的,在上总存在两个不同的),使成立,求的取值范围.
给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,且其短轴上的一个端点到的距离为. (Ⅰ)求椭圆的方程和其“准圆”方程; (Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直,并说明理由.
如图,四棱锥中,底面,四边形中,,,,. (Ⅰ)求证:平面平面; (Ⅱ)设. (ⅰ) 若直线与平面所成的角为,求线段的长; (ⅱ) 在线段上是否存在一个点,使得点到点的距离都相等?说明理由.
(本小题满分12分)等差数列的各项均为正数,,前项和为,等比数列中,,,是公比为64的等比数列. (Ⅰ)求与; (Ⅱ)证明:.