(本小题满分12分)已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是(1)求椭圆E的方程;(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由.
计算: (1) (2)已知,计算:.
选修4—5:不等式选讲 已知实数满足,且. (Ⅰ)证明:; (Ⅱ)证明:.
选修4-4:坐标系与参数方程 在直角坐标系中,曲线的参数方程为(为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为:(其中为常数). (Ⅰ)若曲线与曲线只有一个公共点,求的取值范围; (Ⅱ)当时,求曲线上的点与曲线上点的最小距离.
选修4—1:几何证明选讲 如图,已知点在⊙直径的延长线上,切⊙于点,是的平分线,交于点,交于点. (Ⅰ)求的度数; (Ⅱ)若,求.
设函数 (1)当时,求函数的最大值; (2)令,()其图象上任意一点处切线的斜率≤恒成立,求实数的取值范围; (3)当,,方程有唯一实数解,求正数的值.