(本小题满分12分)已知椭圆E的长轴的一个端点是抛物线的焦点,离心率是(1)求椭圆E的方程;(2)过点C(—1,0),斜率为k的动直线与椭圆E相交于A、B两点,请问x轴上是否存在点M,使为常数?若存在,求出点M的坐标;若不存在,请说明理由.
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为 (1)求双曲线C的方程; (2)若直线与双曲线C恒有两个不同的交点A和B,且(其中O为原点). 求k的取值范围.
如图,矩形中,,,为上的点,且,AC、BD交于点G. (1)求证:; (2)求证;; (3)求三棱锥的体积.
已知命题p:“”,命题q:“”若命题“p且q”是真命题,求实数a的取值范围.
已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列. (Ⅰ)求椭圆的标准方程; (Ⅱ)若直线与轴正半轴、轴分别交于点,与椭圆分别交于点,各点均不重合,且满足,. 当时,试证明直线过定点.过定点(1,0)
已知. (Ⅰ)时,求证在内是减函数; (Ⅱ)若在内有且只有一个极值点,求实数的取值范围.