已知二次函数(其中)(1)试讨论函数的奇偶性.(2)当为偶函数时,若函数,试证明:函数在上单调递减,在上单调递增;
如图,在三棱锥中,侧面与侧面均为边长为1的等边三角形,,为中点.(Ⅰ)证明:平面;(Ⅱ)证明:;(Ⅲ)求三棱锥的体积.
【改编】已知圆:与轴相切,点为圆心.(1)求的值;(2)求圆在轴上截得的弦长;(3)若点是直线上的动点,过点作直线与圆相切,为切点.当切线长最短时,求四边形的面积.
【原创】如图,在三棱柱中,侧棱底面, 为的中点,.(1)求证:平面;(2)若,求点到平面的距离.
过点M(0,1)作一条直线,使它被两条直线l1:x-3y+10=0,l2:2x+y-8=0所截得的线段恰好被M点平分.求此直线方程.
如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,点E、F分别为棱AB、PD的中点.(1)求证:平面PCD;(2)求证:平面PCE⊥平面PCD.