(本小题 满分14分)已知是偶函数,且上满足①对任意,②当。(1)求的值,并证明当(2)利用单调性定义,判断在()上的单调性。(3)上恒成立,求实数的取值范围。
已知点在抛物线上,直线(,且)与抛物线,相交于、两点,直线、分别交直线于点、.(1)求的值;(2)若,求直线的方程;(3)试判断以线段为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.
已知函数,.(1)若函数在其定义域上为增函数,求的取值范围;(2)当时,函数在区间上存在极值,求的最大值.(参考数值:自然对数的底数≈).
已知等差数列的前项和为,且、成等比数列.(1)求、的值;(2)若数列满足,求数列的前项和.
如图,在五面体中,四边形是边长为的正方形,平面,,,,,是的中点.(1)求证:平面;(2)求证:平面;(3)求五面体的体积.
某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
(1)求、、的值;(2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这名学生中随机抽取名学生与张老师面谈,求第三组中至少有名学生与张老师面谈的概率