如图,M是单位圆与x轴正半轴的交点,点P在单位圆上,,四边形OMQP的面积为S,函数(1)求函数的表达式及单调递增区间;(2)在中,a、b、c分别为角A、B、C的对边,若,求a的值。
如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点. (1)求证:AC⊥SD; (2)若SD⊥平面PAC,求二面角PACD的大小; (3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点. (1)求证:DE∥平面BCP. (2)求证:四边形DEFG为矩形. (3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点. (1)求证:BF∥平面A′DE; (2)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.
如图,正方形ABCD和四边形ACEF所在的平面互相垂直,EF∥AC,AB=,CE=EF=1. (1)求证:AF∥平面BDE; (2)求证:CF⊥平面BDE.
如图,几何体EABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. (1)求证:BE=DE; (2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.