文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:文文:“过点作的中垂线,垂足为”;彬彬:“作的角平分线”.数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正.”(1)请你简要说明文文的辅助线作法错在哪里.(2)根据彬彬的辅助线作法,完成证明过程.
如图,甲、乙两个转盘分别被分成了3等份与4等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.
(1)请将所有可能出现的结果填入下表:
乙
积
甲
1
2
3
4
(2)积为9的概率为 ;积为偶数的概率为 ;
(3)从 1 ~ 12 这12个整数中,随机选取1个整数,该数不是(1)中所填数字的概率为 .
如图,在 ΔABC 中, AB = AC ,点 D 、 E 分别在 AB 、 AC 上, BD = CE , BE 、 CD 相交于点 O .
(1)求证: ΔDBC ≅ ΔECB ;
(2)求证: OB = OC .
如图,在平面直角坐标系 xOy 中,直线 y = kx + 3 分别交 x 轴、 y 轴于 A , B 两点,经过 A , B 两点的抛物线 y = - x 2 + bx + c 与 x 轴的正半轴相交于点 C ( 1 , 0 ) .
(1)求抛物线的解析式;
(2)若 P 为线段 AB 上一点, ∠ APO = ∠ ACB ,求 AP 的长;
(3)在(2)的条件下,设 M 是 y 轴上一点,试问:抛物线上是否存在点 N ,使得以 A , P , M , N 为顶点的四边形为平行四边形?若存在,求出点 N 的坐标;若不存在,请说明理由.
如图, Rt Δ ABC 中, ∠ ACB = 90 ° ,将 ΔABC 绕点 C 顺时针旋转得到 ΔDEC ,点 D 落在线段 AB 上,连接 BE .
(1)求证: DC 平分 ∠ ADE ;
(2)试判断 BE 与 AB 的位置关系,并说明理由;
(3)若 BE = BD ,求 tan ∠ ABC 的值.
某商品的进价为每件40元,在销售过程中发现,每周的销售量 y (件 ) 与销售单价 x (元 ) 之间的关系可以近似看作一次函数 y = kx + b ,且当售价定为50元 / 件时,每周销售30件,当售价定为70元 / 件时,每周销售10件.
(1)求 k , b 的值;
(2)求销售该商品每周的利润 w (元 ) 与销售单价 x (元 ) 之间的函数解析式,并求出销售该商品每周可获得的最大利润.