定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),(1)求证:f(0)=1; (2)求证:对任意的x∈R,恒有f(x)> 0;(3)证明:f(x)是R上的增函数;(4)若f(x)·f(2x-x2)>1,求x的取值范围。
设等比数列{an}的前n项和为Sn.已知an+1=2Sn+2() (1)求数列{an}的通项公式; (2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列, (1)在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由; (2)求证:.
·浙江理)在公差为的等差数列中,已知,且成等比数列。 (1)求; (2)若,求
已知首项为的等比数列不是递减数列, 其前n项和为, 且S3 + a3, S5 + a5, S4 + a4成等差数列. (1) 求数列的通项公式; (2) 设, 求数列的最大项的值与最小项的值.
·陕西理)设是公比为q的等比数列. (1) 推导的前n项和公式; (2) 设q≠1, 证明数列不是等比数列.
·山东理)设等差数列的前项和为,且,. (1)求数列的通项公式; (2)设数列的前项和为,且(为常数),令,求数列的前项和。