已知数列{an}满足:a1=,且an= (1) 求数列{an}的通项公式; (2) 证明:对于一切正整数n,不等式a1·a2·……an<2·n!
设的内角所对的边长分别为,且,.(Ⅰ)求及边长的值;(Ⅱ)若的面积,求的周长.
已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且.(Ⅰ)求双曲线的方程;(Ⅱ)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线和,设被圆截得的弦长为,被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
如图,在四棱锥中,侧面PAD⊥底面ABCD,侧棱,,底面为直角梯形,其中BC∥AD,AB⊥AD,,O为AD中点.(Ⅰ)求直线与平面所成角的余弦值;(Ⅱ)线段上是否存在一点,使得二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.
从1到9的九个数字中任取三个偶数四个奇数,问:(Ⅰ)能组成多少个没有重复数字的七位数?(Ⅱ)上述七位数中三个偶数排在一起的概率?(Ⅲ)在(Ⅰ)中任意两偶数都不相邻的概率?
已知圆,点.求:(Ⅰ)过点A的圆的切线方程;(Ⅱ)O是坐标原点,连接OA、OC,求△AOC的面积S.