设数列的首项为,前n项和满足关系式:1)求证: 数列是等比数列; 2)设数列的公比为f(t),作数列,使得,求:b及;3)求和。
(本小题共14分)已知抛物线P:x2="2py" (p>0). (Ⅰ)若抛物线上点到焦点F的距离为. (ⅰ)求抛物线的方程; (ⅱ)设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程; (Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接,并延长分别交抛物线的准线于C, D两点,求证:以CD为直径的圆过焦点F.
(本小题共13分)已知函数. (Ⅰ)若在处取得极值,求a的值; (Ⅱ)求函数在上的最大值.
(本小题共13分)已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△,使得平面⊥平面ABD. (Ⅰ)求证:平面ABD; (Ⅱ)求直线与平面所成角的正弦值; (Ⅲ)求二面角的余弦值.
(本小题共14分)张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为,. (Ⅰ)若走L1路线,求最多遇到1次红灯的概率; (Ⅱ)若走L2路线,求遇到红灯次数的数学期望; (Ⅲ)按照“平均遇到红灯次数最少”的要求,请你帮助张先生从上述两条路线中选择一条最好的上班路线,并说明理由.
(本小题共13分)已知等差数列的前项和为,a2=4, S5=35. (Ⅰ)求数列的前项和; (Ⅱ)若数列满足,求数列的前n项和.