已知抛物线和点,过点P的直线与抛物线交与两点,设点P刚好为弦的中点。(1)求直线的方程(2)若过线段上任一(不含端点)作倾斜角为的直线交抛物线于,类比圆中的相交弦定理,给出你的猜想,若成立,给出证明;若不成立,请说明理由。(3)过P作斜率分别为的直线,交抛物线于,交抛物线于,是否存在使得(2)中的猜想成立,若存在,给出满足的条件。若不存在,请说明理由。
设数列的前项和为, 且. 设数列的前项和为,且.(1)求. (2) 设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立
(本题满分15分) 已知函数且在处取得极小值. (1)求m的值。 (2)若在上是增函数,求实数的取值范围。
(本题满分14分)已知在数列中,的前n项和, (1)求数列的通项公式; (2)令,数列的前n项和为求
(本题满分14分)在锐角三角形ABC中,已知角A、B、C所对的边分别为a、b、c,且, (1)若c2=a2+b2—ab,求角A、B、C的大小; (2)已知向量的取值范围。
(本题满分14分)已知函数. (1)求函数的单调递增区间; (2)若,,求的值.