【2015高考北京,理20】已知数列满足:,,且.记集合.(Ⅰ)若,写出集合的所有元素;(Ⅱ)若集合存在一个元素是3的倍数,证明:的所有元素都是3的倍数;(Ⅲ)求集合的元素个数的最大值.
如图所示,在空间直角坐标系中BC=2,原点O是BC的中点,点A的坐标是(,,0),点D在平面yOz内,且∠BDC=90°,∠DCB=30°. (1)求的坐标; (2)设和的夹角为,求cos的值.
已知六面体ABCD—A′B′C′D′是平行六面体. (1)化简++,并在图上标出其结果; (2)设M是底面ABCD的中心,N是侧面BCC′B′对角线BC′上的分点,设=++,试求,,的值.
(1)求与向量a=(2,-1,2)共线且满足方程a·x=-18的向量x的坐标; (2)已知A、B、C三点坐标分别为(2,-1,2),(4,5,-1),(-2,2,3),求点P的坐标使得=(-); (3)已知a=(3,5,-4),b=(2,1,8),求:①a·b;②a与b夹角的余弦值; ③确定,的值使得a+b与z轴垂直,且(a+b)·(a+b)=53.
如图所示,已知空间四边形ABCD的各边和对角线的长都等于a,点M、N分别是AB、CD的中点. (1)求证:MN⊥AB,MN⊥CD; (2)求MN的长; (3)求异面直线AN与CM所成角的余弦值.
如图所示,在平行六面体ABCD-A1B1C1D1中,设=a,=b,=c,M,N,P分别是AA1,BC,C1D1的中点,试用a,b,c表示以下各向量: (1);(2);(3)+.