如图,在正四面体中,分别是棱的中点.(1)求证:四边形是平行四边形;(2)求证:平面;(3)求证:平面.
(本小题满分14分)数列满足.(Ⅰ)若是等差数列,求其通项公式;(Ⅱ)若满足,为的前项和,求.
如图,AC 是圆 O 的直径,点 B 在圆 O 上,∠BAC=30°,BM⊥AC交 AC 于点 M,EA⊥平面ABC,FC//EA,AC=4,EA=3,FC=1.(1)证明:EM⊥BF;(2)求平面 BEF 与平面ABC 所成的二面角的余弦值.
已知向量 与 共线,设函数 。(1)求函数 的周期及最大值;(2)已知锐角 △ABC 中的三个内角分别为 A、B、C,若有 ,边 BC=,,求 △ABC 的面积.
(本小题满分14分) 已知椭圆的中心在原点,一个焦点,且长轴长与短轴长的比是.若椭圆在第一象限的一点的横坐标为,过点作倾斜角互补的两条不同的直线,分别交椭圆于另外两点,.(Ⅰ)求椭圆的方程;(Ⅱ)求证:直线的斜率为定值;(Ⅲ)求面积的最大值.
(本小题满分14分)已知四棱锥的底面为菱形,且,,与相交于点.(Ⅰ)求证:底面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)若是上的一点,且,求的值.